

Forecasting ionospheric Total Electron Content maps with deep neural networks

Noëlie Cherrier, Thibaut Castaings, Alexandre Boulch

DeLTA : Deep Learning for Aerospace Applications

Fluid mecanics

2 < □ > < ≡ >

Table of contents

TEC

Approach for TEC prediction

Experiments

Conclusion and future work

lonosphere Highly ionized region in upper atmosphere.

TEC Map

Total Electron Content (TEC) measures ionospheric activity. TEC = Integration of electron density along a $1m^2$ sect. tube between GNSS station and GNSS satellite

Table of contents

TEC

Approach for TEC prediction

Experiments

Conclusion and future work

Code TEC data

aiuws.unibe.ch/ionosphere/ based 200 stations 1 TEC map every 2 hours since 2003

- ► 72 × 80
- Resolution : $5^{\circ} \times 2.5^{\circ}$

^{1.} CODE : Center for Orbit Determination in Europe

^{2.} AIUB :Astronomical Institute, Univ. of Bern

8

• • • • • • • •

Preprocessing

Heliocentric coordinates : remove rotation effect.

8

• • • • • • •

Preprocessing

Heliocentric coordinates : remove rotation effect.

Prediction based on previous states

- No physical model
- No additional inputs
- No prediction of perturbations

8 < • > < = >

Network architecture

9

Encoder - Decoder architecture³

3. Work presented at ICONIP : Deep sequence-to-sequence neural networks for ionospheric activity map prediction [1]

Recurrent U-net

11 (-) (-)

TEC

Approach for TEC prediction

Experiments

Conclusion and future work

Comparison with Encoder-Decoder method

Prediction difference between [1] and Rec-Unet.

Quantitative results

Whole test set					
Method	RMS 48h	First 24h	Last 24h		
Priodic	2.74	2.88	2.53		
ICONIP	2.65	2.65	2.65		
Ugru	2.66	2.46	2.85		

First half of test set

Method	RMS 48h	First 24h	Last 24h
Priodic	2.88	2.87	2.89
ICONIP	2.75	2.74	2.76
Ugru	2.60	2.46	2.74

Note : mean over 6 runs, numbers updated compared to paper. Different

test set. **14**

	Reference	RMS (ref)	RMS (best run)
[2]	Chunli D., Jinsong P.	1.45	2.1
[3]	Huang, Z., Yuan, H.	≤ 2	1.53
[4]	Niu, R. <i>et al.</i>	3.1	0.73
4			

4. Erratum : in paper numbers from [1]. Replaced at aboulch.github.

THE FRENCH AEROSPACE LAB

TEC

Approach for TEC prediction

Experiments

Conclusion and future work

Conclusion

Our method

- Global TEC prediction
- Recurrent Unet

Perspectives

- Improve prediction from 24h to 48h
- Improve convergence (may diverge)
- Reduce time dependency to training set (train on more data)
- Involve other sources (e.g. sun imagery)

Thanks for your attention

Slides and updated paper at : aboulch.github.io

Implementation

18 < □ > < ≣ >

- PyTorch framework
- Code to be released

References

Noëlie Cherrier, Thibaut Castaings, and Alexandre Boulch.

Deep sequence-to-sequence neural networks for ionospheric activity map prediction. In International Conference on Neural Information Processing, pages 545–555. Springer, 2017.

D. Chunli and P. Jinsong.

Modeling and prediction of TEC in China region for satellite navigation. In 2009 15th Asia-Pacific Conference on Communications, pages 310–313, Oct 2009.

Z. Huang and H. Yuan.

Ionospheric single-station TEC short-term forecast using RBF neural network. *Radio Science*, 49(4) :283–292, 2014.

R. Niu, C. Guo, Y. Zhang, L. He, and Y. Mao.

Study of ionospheric TEC short-term forecast model based on combination method. In 2014 12th International Conference on Signal Processing (ICSP), pages 2426–2430, Oct 2014.

